
Issues in Temporal Reasoning for Autonomous Control Systems �

Nicola Muscettola z

Paul Morris y

Barney Pell {

Ben Smith x

Abstract

Deep Space One will be the �rst spacecraft to
be controlled by an autonomous agent poten-
tially capable of carrying out a complete mission
with minimal commanding from Earth. The New
Millennium Remote Agent (NMRA) includes a
planner-scheduler that produces plans, and an
executive that carries them out. In this paper
we discuss several issues arising at the interface
between planning and execution. including exe-
cution latency, plan dispatchability, and the dis-
tinction between controllable and uncontrollable
events. Temporal information in the plan is rep-
resented within the general framework of Simple
Temporal Constraint networks, as introduced by
Dechter, Meiri, and Pearl. However, the execu-
tion requirements have a substantial impact on
the topology of the links and the propagation
through the network.

1 Introduction

Deep Space One (DS1) will be the �rst spacecraft to be
controlled by an autonomous agent, the New Millennium
Remote Agent (NMRA) [15], potentially capable of carry-
ing out a complete mission with minimal commanding from
Earth. Similarly to other high-level control architectures
[2] [23] [7] [20] [14] NMRA clearly distinguishes between
a deliberative layer and a reactive layer in its architecture.
The Planner/Scheduler (PS) [12] is in charge of delibera-
tive problem solving. PS transforms a set of goals and con-

�This paper describes work partially performed at the Jet Propul-
sion Laboratory, California Institute of Technology, under contract
from the National Aeronautics and Space Administration.

zRecom Technologies, NASA Ames Research Center, MS 269/2,
Mo�ett Field, CA 94035.

yCaelum Research, NASA Ames Research Center, MS 269/2, Mof-
fett Field, CA 94035.

{Riacs, NASA Ames Research Center, MS 269/2, Mo�ett Field,
CA 94035.

xJet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109.

straints between goals into a complete plan. This activity
may require extensive reasoning about goals and task in-
terdependencies, e�cient utilization of resources and satis-
faction of temporal deadlines. Similarly to classical plan-
ning [19] and scheduling [8] systems this may involve ex-
tensive search and it is inherently time consuming. Once it
is produced, the plan is shipped to the Executive (EXEC)
[17, 18, 16], which issues commands to the low-level real-time
control software according to the plan's directives. EXEC is
purely reactive. High-level directives contained in the plan
correspond to detailed execution scripts. Such scripts allow
EXEC to locally react to \sensor information" interpreted
by the Model-Based Identi�cation and Recovery (MIR) sys-
tem [24]. However, if EXEC or MIR determine that the
execution conditions of the plan are not being met, EXEC
does not try to rearrange the plan in order to adapt to the
new situation. Instead, plan execution is interrupted, the
spacecraft is put in a safe, standby state and PS is asked for
a new plan reecting the new spacecraft con�guration.

As a consequence of the di�erent type of problem solving
of PS and EXEC, the requirement on constraint propaga-
tion algorithms is very di�erent. PS is mainly interested in
checking the temporal consistency of plans whose topology
is modi�ed at every step of the search process. In general,
topology modi�cations are not restricted to any speci�c area
of the plan and they typically move around the plan quite
dramatically during search. The temporal representation re-
quired by PS must use minimal temporal descriptions and
fast global consistency checking. On the other hand, while
EXEC works with plans of a �xed topology, EXEC is inter-
ested in doing the minimal amount of computation required
in order to keep consistency of the plan during execution.
Consistency maintenance also has very strong locality prop-
erties since EXEC always executes activities in a strictly
monotonic temporal order (from past to future). Tight re-
quirements on EXEC's reactivity, however, make the prop-
agation algorithms used by PS impractical. In this respect,
minimality of the temporal networks of a plan is not a major
issue and redundant information may actually be needed in
order to improve performance.

In the rest of the paper we describe those aspects of tem-
poral reasoning embodied in NMRA's PS and EXEC that we
found to be crucial to ensure performance and a robust ex-
ecution in an autonomous control system operating in real-
time. First we briey describe the temporal representation
and temporal reasoning mechanisms used by PS (Section 2)
and EXEC (Section 3). Then we discuss how to make a plan
executable by the simple temporal dispatching propagation
used by EXEC (Section 4). We then describe the problem of



handling events over which EXEC does not have complete
control and we sketch a possible solution (Section 5). We
then discuss related work and conclude the paper.

2 Planning and temporal propagation in PS

Deliberative problem solving in NMRA is carried out by
the Planner/Scheduler (PS). PS consists of two components.
The Incremental Re�nement Scheduler (IRS) is an inter-
val based temporal planner consisting of a heuristics-driven
sub-goaling search. IRS is implemented on top of HSTS, a
domain modeling and temporal database system [10]. Like
other temporal planning representations [1] [5] HSTS im-
poses the restriction that all assertions (called literals and
actions in other planning frameworks) are temporally scoped,
i.e., are valid over an interval. We call a temporally scoped
assertion a token.

The domain representation of HSTS di�ers from that of
other planning systems in two ways. First, HSTS imposes
the restriction that each token must be associated with a
state variable. A state variable can be considered as a gen-
eralization of a single capacity resource and imposes the re-
striction that only one token can be associated with a state
variable at any given time. The activity of each state vari-
able in a plan is represented by a timeline, which consists of a
sequence of tokens. Each token has a non-negative duration
and tokens may be synchronized by appropriate temporal re-
lations. For example (Figure 1), in a spacecraft domain one
plan timeline may describe the state of the engine (warming
up, thrusting, or idle) and another the spacecraft attitude
(e.g., pointing to a target or turning from target A to target
B). Timelines are completely �lled by sequences of tokens
without intermediate gaps. The transitions between tokens
are called timepoints and constitute the variables of a simple
temporal network.

The second major di�erence between HSTS and other
planning representations is that HSTS does not see the world
as an alternation between actions and states, with actions
and states represented by literals in the domain theory. In-
stead, HSTS sees the world as the continuous evolution of
parallel threads, one for each state variable. Since plans are
indeed programs to be executed by EXEC, the literal asso-
ciated with a token, the token type, is in fact the invocation
pattern of a function that EXEC will be running while the
token is active. For each thread, execution will be trans-
ferred from one function to another at a timepoint. Loosely
speaking, a timepoint is therefore the analogue of an \ac-
tion" in classical planning. It has no temporal extension and
represents the moment at which the function corresponding
to the new token starts executing.

Besides �lling in gaps between tokens on a timeline, PS
must also enforce synchronization constraints between to-
kens that are required by the domain theory. These con-
straints are represented as compatibilities associated with
each token type that can possibly belong to a state variable.

Figure 2 shows a simple compatibility tree derived from
the DS1 domain theory. It says that the state in which the
MICAS camera is on must be preceded by a state in which it
is turning on, and followed by one in which it is turning o�.
While the camera is on, it consumes �fteen watts of power.

Temporal relations requested by a compatibility are im-
plemented by adding a set of temporal distance constraints
between the timepoints corresponding to the start and end
of the tokens involved. For example, a relation such as

X contained by [10; 30] [0;+1] Y

Engine

Attitude

warm up thrust (B) idle

�
�
��

B
B
BB

contained-by

turn (A,B) point (B) turn (B,C)

�� ��
meets meets

Figure 1: Plans as Parallel Timelines.

(MICAS_On)
:compatibilities
(AND
(met_by (MICAS_Turning_On))
(meets (MICAS_Turning_Off))
(equal (REQUEST (Power 15)))

Figure 2: A Compatibility Tree.

will be implemented as

10 � start(X)� start(Y ) � 30

and
0 � end(Y )� end(X) � +1

. The HSTS domain description language allows the rep-
resentation of every possible combination of distance con-
straints between the timepoints in one token and the time-
point in another token. Other separation links between
timepoints are also imposed between the start and the end
of a single token. These represent temporal constraints on
the duration of a token and are required to be non-negative.
The temporal relations implemented between two tokens are
guaranteed to be convex; therefore, disequalities between
timepoints are not allowed. The set of timepoints and dis-
tance links thus constitute a simple temporal network. It
is well known [6] that the solution of such a constraint net-
work can be translated into the solution of a set of associated
shortest-path problems.

During plan construction PS repeatedly extends and mod-
i�es a partial plan. These modi�cations induce changes to
the temporal constraint network (timepoints, distance links
and distance bounds). In order to guarantee plan consis-
tency the plan needs to propagate frequently to ensure that
the addition or removal of constraints and variables has not
created an inconsistency situation. For this purpose, HSTS
only uses temporal propagation that is equivalent to an in-
cremental version of the Bellman-Ford algorithm [4]. To en-
sure high performance, the propagation algorithm includes
fast inconsistency detection and inuence analysis to isolate
minimal required modi�cations during propagation, along
the lines of [3]. Another optimization used is to always
represent sets of equivalent timepoints with a single time-
point variable. Collapse and separation of timepoints are
performed every time an equality constraint (i.e., a separa-
tion link with bound [0; 0]) is added or removed from the
constraint network.



3 Execution and temporal propagation in EXEC

Given a simple temporal network, EXEC has two important
duties:

1. Select and schedule activities for execution.

2. Update the network to reect new data.

These two duties are the core of the \plan running" algo-
rithm. Basically, the plan runner manages a queue of time-
points that become available for execution as time passes
and logically preceding timepoints are executed. The actual
execution time of a timepoint is used to propagate tempo-
ral information in the plan. (This is one of the sources of
\new data" to which item 2 refers.) Together with the sim-
ple passage of time, timepoint execution directly narrows
the domain of the executed timepoint while other timepoint
domains may be indirectly a�ected because of the network
constraints. To avoid future inconsistency, the changes must
be propagated through the network.

While EXEC is performing this cycle, other timepoints
in the plan can become executable simply because time has
passed. These will appear in the queue of incoming time-
points but EXEC may not get to them until the plan run-
ning cycle is completed. This cycle constitutes an intrinsic
EXEC latency which is in fact a quantitative measure of
EXEC's reactivity. It is important for PS to know EXEC's
latency for two reasons. First, latency is equivalent to exe-
cution time uncertainty. If a timepoint is scheduled to start
at time t0 and the latency is �, EXEC can only guaran-
tee that the timepoint will indeed be executed at time t

with t0 �
�

2
� t � t0 +

�

2
. Second, the latency determines

the possible lengths of temporal links that can separate two
time points in the plan in order to guarantee a robust plan
execution. This imposes a restriction on the temporal con-
straints that can be included in the PS model or that can
be requested by a user. Basically, such temporal constraints
can only include zero temporal separations (handled by PS
as timepoint equivalences) and temporal separations larger
than the latency. If the maximum requested separation be-
tween two timepoints t1 and t2 is smaller than the latency,
then EXEC cannot guarantee that the plan will execute
without breaking. In fact, by the time t2 is enabled the
separation between the current time and scheduled time for
t2 could be greater than the latency, a situation that will
break plan execution.

Notice that the concept of latency or time uncertainty is
quite di�erent from that of time granularity. The latter is
the minimum separation between time events that can be
recognized by the time services clock, the device that pro-
vides time both to NMRA and to the underlying real-time
control system. PS can indeed schedule timepoints sepa-
rated by distances shorter than the time uncertainty pro-
vided that these time points are not connected by an explicit
enablement link. The reason for this apparently counterin-
tuitive behavior is that the existence of a link guarantees
that the following timepoint will have to be in scope in the
next EXEC cycle, while unconnected timepoints can be cor-
rectly handled in the same cycle. Clearly, the time uncer-
tainty for the execution of such events is still equal to the
EXEC latency.

In NMRA, EXEC latency is conservatively estimated to
be at least the expected worst case performance under the
most taxing conditions (corresponding to starting a token
for each of the plan timelines). More adaptive schemes are
also possible in which PS schedules very short duration to-
kens only if the number of timepoints that must be started

t -[1; 1] t -[1; 1] t -[1; 1] t . . .
. . .

Figure 3: Accumulation of Latency.

at the same time is low according to the current partial plan
and therefore EXEC's latency is lower.

For EXEC to be highly reactive, latency should be as low
as possible. Because propagation time has a major impact
on the EXEC latency, it is essential that propagation time
be minimized. We achieve this by restricting the EXEC to
one-step propagation, i.e., the propagation is only carried
as far as the immediate neighbors. EXEC's time propaga-
tion proceeds as follows. EXEC receives from the planner
a directed acyclic graph of timepoints, called the activity
graph, which has the form of a simple temporal network.
We will say a timepoint is scheduled once its actual time of
occurrence becomes �xed and known. A timepoint in the
graph is enabled if all its parents have already been sched-
uled. Once it is enabled, a timepoint becomes itself eligible
for scheduling. After a timepoint is scheduled, the EXEC
must propagate the \collapsed" time-value to other time-
points. For enabled timepoints that are not scheduled, the
EXEC should also propagate the narrowing of the lower time
bound that corresponds to the passage of time. While this
design simpli�es propagation and hence reduces latency, it
requires plans that execute correctly in spite of this restric-
tion, as will be discussed in the next section.

One �nal point relates to the relation between te, the
actual time at which a timepoint is executed, and ts, the
scheduled time. The latter corresponds to the time at which
EXEC actually declares that the timepoint has been exe-
cuted. This time is used for time propagation in the plan
and, because of EXEC's latency, it is di�erent than the ac-
tual execution time. Speci�cally, consider a time point with
time bound [l; U ] and assume that � is the EXEC latency.

Then ts = max(te�
�

2
; l). In other words the scheduled time

is pushed in the past by at most half the time uncertainty.
Without this distinction, timepoint execution will be subject
to the problem of latency drift. Latency will accumulate in
the plan during EXEC's time propagation and the propa-
gated time bounds of timepoints late in the plan will be
pushed (and eventually collapsed) into the upper bound U .
The translation of execution time into the past is consistent
with the intrinsic time execution uncertainty and avoids the
latency drift problem.

The example in �gure 3 illustrates what can happen if
the actual time of execution is propagated. Here there is a
tightly synchronized sequence of timepoints. Although the
sequence as a whole may have a exible time window, the
latencies accumulate and eventually overwhelm the exibil-
ity.

4 Dispatchability

The activity graph is essentially the �nal form of the simple
temporal network used by the planner in constructing the
plan. However, certain restrictions and modi�cations are
necessary. Most importantly, because of one-step propaga-
tion, some additional links may be needed to detect potential
inconsistencies before it is too late. As an example of this
consider �gure 4.

Once A has been scheduled, both D and B are enabled.



- -A

[0; 0]

[0;1]

B

[1;1]

[1; 1] C

[2;1]

-

?

[0;1] [2; 2]

[0;1]

D

s s s

s

Figure 4: B forces D into past.

- -A

[0; 0]

[1;1]

B

[1;1]

[1; 100] C

[99;1]

-

?

[0;1] [99; 200]

[0;1]

D

s s s

s

Figure 5: Prefer B after D.

Thus, B may be scheduled before D. Here it is easy to see
that D must occur 1 time unit before B. Unfortunately,
this may not be discovered until some time after B has been
scheduled, when the collapsed value has been propagated to
D.

It can be shown that if one timepoint is forced to be af-
ter another, then its earliest-start-time (EST) must be later.
Thus, one solution to this di�culty is to schedule activities
at their earliest start times. However, that would severely
restrict the exibility of the plan since all activities would
have their time bounds collapsed to a single time. The solu-
tion we adopt is to place an additional \implied" link from
D to B. In that case, if B is scheduled before D, the in-
consistency will be discovered immediately. In general, the
additional links are only used for propagation, not for de-
termining enabling conditions. However, in cases where the
minimum separation is non-negative, as here, the new link
could also be used as an enabling condition.

It is shown in [13] that the network, augmented with
implied links, can be �ltered to a smaller size by removing
unneeded edges; in practice, the �ltered size turns out to be
comparable to that of the original network.

At the cost of some extra work for the EXEC, the implied
links could also be used to select between several enabled
activities. Consider the network in �gure 5. In this case,
the distance for DB computes as [�1; 199], which means D
and B can occur in any order. However, if B occurs �rst
then D must follow within 1 time unit, whereas if D occurs
�rst then B may occur at any time within 199 time units.
Clearly the second option retains greater exibility, which
suggests using the distance information to help guide the
execution.

5 Uncontrollable Events

We now consider uncontrollable timepoints whose time of
occurrence is outside the direct control of the EXEC. These
may be observable or not. The time of observation may
follow, or even precede (via predictive measurements), the

time of occurrence. The uncontrollable timepoints may be
linked either to controllable timepoints or to other uncon-
trollables. These links may either represent causal relations
that are guaranteed by Nature, or constraints that must be
respected by the EXEC. In the latter case, the onus is on the
EXEC to schedule one end of the link so that the constraint
is satis�ed.

A general approach for handling uncontrollables is to pre-
tend that EXEC is scheduling natural events, but have it
choose times that are consistent with observation. In or-
der for this to work, the scheduling of controllables must
not propagate in a way that restricts the exibility of Na-
ture. In general, a network is considered brittle if propaga-
tion across a non-causal constraint causes an uncontrollable
to be squeezed. In this case, success of the plan represented
by the network would depend on a fortuitous occurrence of
the uncontrollable.

Unfortunately, it is not enough to ensure that propaga-
tion during planning does not squeeze uncontrollables. This
is because during execution, timepoints are further squeezed.
This happens in three ways.

1. Execution squeezes controllables.

2. Observation squeezes uncontrollables.

3. Simple passage of time may squeeze both.

Thus, the squeeze of a controllable may propagate (via non-
causal links) to an uncontrollable during execution, render-
ing the plan brittle.

The following examples illustrate these points.

� Camera needs to be warmed-up between one and two
hours before event uncertain by one day.

� Camera needs to be cooled-down between one and two
hours after event uncertain by one day.

� Camera needs to be warmed-up between one and two
days before event uncertain by one hour.

� Camera needs to be warmed-up when power available
before event uncertain.

Note that the �rst two examples are very similar except
for the direction of time. Both produce consistent temporal
networks in the sense of Dechter et al. At �rst sight, the �rst
constraint seems impossible to achieve, whereas the second
appears easy, because of the direction of time. This assumes
the event is observable when it occurs. If we vary this as-
sumption, the symmetry in the cases becomes more appar-
ent. For example, if the time of the event is not observable
at all, then the second constraint is equally unachievable.
Conversely, in the case of the �rst constraint, a precursor
event may resolve the uncertainty before the warm-up pe-
riod, so it may be achievable after all. Thus, it is really
the information increment resulting from observation that
is asymmetric with respect to time. Most commonly, un-
controllable events are regarded as observable at the time
they occur.

The third example is clearly achievable even without a
precursor event, simply by doing a worst-case analysis.

The last example shows that interactions between re-
quirements can a�ect the achievability. Depending on other
demands for power, this example may resemble either the
�rst or the third.

Aspects of these examples may combine in one problem,
as we see in �gure 6. Here X is uncontrollable but observ-
able at the time it occurs. We may think of AX as a causal



- -A

[0; 0]

[0;1]

B

[0;1]

[0; 1] C

[0;1]

-

?

[0; 100] [0;1]

[0; 100]

X

s s s

c

Figure 6: Managing An Uncontrollable.

- -A

[0; 0]

[0;1]

B

[99;1]

[0; 1] C

[100;1]

-

?

[100; 0] [0;1]

[100; 0]

X

s s s

c

Figure 7: Strong Propagation.

link, while the others are constraints to be achieved. This
network is consistent in the sense of Dechter et al. Moreover,
X is not squeezed by a controllable during the consistency
propagation. Note, however, that C is constrained to fol-
low X, while B may not precede C by more than one time
unit. Thus, if B is done early, and X happens late, the
BC constraint will be violated. To put it another way, the
uncontrollable X gets squeezed when B is scheduled.

There are two practical strategies for executing this net-
work. One is to wait until X occurs, and then schedule B.
The second is to schedule B at time 99 or later, irrespective
of when X occurs. (Even better is a combination of these,
where one schedules B either after X has occurred, or on or
after time 99.)

Vidal and Fargier [21] consider problems of this kind,
and introduce concepts of strong and dynamic controllabil-
ity. Roughly speaking, strong controllability means there
is a strategy that works irrespective of observation, as in
the second case of the previous paragraph. Dynamic con-
trollability may schedule controllables based on observation
of uncontrollables, as in the �rst case. In both cases, the
scheduling of a controllable will not squeeze an uncontrol-
lable.

Vidal and Fargier sketch a means for computing a strong
controllability solution. The essential idea is to propagate
the \non-squeezability" to the controllable timepoints. Thus,
the controllables are \super-squeezed" in order to guarantee
that the uncontrollables will not be squeezed during execu-
tion. This is done by inverting the upper and lower bounds
of the duration interval prior to propagation. Thus, if the
interval is [u; v], it is propagated as if it was [v; u]. Figure 7
shows how this strong propagation would look, as applied
to our earlier example. Note that the strong propagation
causes X to have [100; 0] as its domain. Note also that back-
ward and forward propagation through the inverted bounds
could continue to narrow the domains of A and X indef-
initely. It is unclear from Vidal and Fargier's sketchy de-
scription how this apparent inconsistency would be excused.
In an earlier paper [22], Vidal and Ghallab eliminate the in-

- -A

[0; 0]

[0;1]

B

[x� 1;1]

[0; 1]

C

[x;1]

-

?

[x; x] [0;1]

[x; x]

X

s s s

c

Figure 8: Variable Propagation.

verted link by, in essence, composing it with a neighbouring
controllable link. This restores consistency. (For example,
in �gure 7, the edges AX and XC can be composed to
form the single edge AC with bounds [100;1], resulting in
a consistent network.) However, they restrict their approach
to situations where the uncontrollable links are isolated. A
more general treatment that handles arbitrary constellations
of uncontrollables would be desirable.

Another method that works for isolated inverted links is
to simply exclude U-turns in the propagation (i.e., a propa-
gation from Y to X following one from X to Y would be dis-
allowed). With this method (or the composition approach
discussed above), strong propagation causes B to have a
bound of [99;1], which corresponds to one of the execution
strategies mentioned earlier.

Vidal and Fargier do not supply a method for deriving a
dynamic control strategy. We suggest one here. The basic
idea is to assign a variable to represent each uncontrollable
duration. The variables may be propagated as algebraic
expressions to derive observation-dependent bounds on the
controllables. Figure 8 illustrates this. The label [x� 1;1]
of B may be interpreted as saying that B can be scheduled
at any time after x� 1, as soon as the value of x is known.
If x is observable only when X happens, then the value of
x � 1 is not known until after time x, so we must narrow
the domain of B to [x;1]. This may uncover a \dynamic
inconsistency." (Notice, though, that the x � 1 value po-
tentially handles situations where the value of x becomes
known before X actually occurs, such as when a precursor
observation provides this information.)

Determining quiescence may appear to pose a di�culty
for the task of propagating algebraic expressions. However,
one may �rst compute implied links from each observable
node to every controllable node, and then limit the propa-
gation to single steps across those links. The complexity in
that case is within the bounds of Johnson's algorithm [4],
which appears manageable.

The strong and dynamic strategies can be combined by
assigning X a domain label of [min(x; 100); max(x; 0)]. In
this case, propagation produces [min(x � 1; 99);1] for B,
which may be narrowed to [min(x; 99);1], corresponding
to the mixed strategy mentioned earlier. Further work is
needed to determine if this approach leads to a test for dy-
namic controllability in the sense of Vidal and Fargier, and
the resulting complexity. (The problem is conjectured [21]
to be NP-complete.)

Strong/variable propagation are important to the plan-
ner to produce non-brittle plans. However, the EXEC does
not have to perform these costly propagations. The EXEC
need only ensure that the narrowing that occurs when an en-
abled controllable activity is scheduled (or passed over) does
not causing squeezing of any uncontrollable. The addition of



implied links, as discussed earlier, can ensure that one-step
propagation is adequate for this determination. Strategies
such as that described in the previous paragraph may also
be compiled into restrictions on the EXEC's scheduling of
individual activities.

6 Related Work

Temporal reasoning is a fertile area of research in AI. Much
of this work centers around isolated reasoning capabilities,
such as temporal constraint satisfaction [6], temporal de-
scription logics [1], and planning and scheduling with met-
ric time [11]. Our work draws upon these basic capabilities
for temporal reasoning, and also addresses additional issues
such as execution latency, dispatchability, and uncontrol-
lable events.

Other papers that also deal with the e�ect of self-time,
but in a di�erent setting, include research on negotiating
under time constraints [9], anytime algorithms [5] to enable
the use of results of computation in a timely manner, and the
need to reason explicitly about the time taken to produce
a plan so that future planning activity can be �t into the
current plan [17].

CIRCA [14] is closely related to the work in this paper
in that it addresses the need to reason about execution-
time computational overhead within the planning process to
produce plans that guarantee robust real-time performance.
The CIRCA work also addresses the issue of uncontrollable
events. A major di�erence between CIRCA and the current
work is that the output of CIRCA is a complex program,
whereas the output of our planner is directly executed as a
temporal network.

7 Conclusions

This paper has discussed challenging issues that arise when
autonomous agents must reason about temporal aspects of
the world they inhabit. An agent may need to reason about
the passage of time, changes in the world over time, and the
impact of such changes on the knowledge and future activ-
ities of the agent, and vice-versa. In reasoning about the
passage of time, it is especially important that the agent
take into account the time required by its own computa-
tional process.

We have incorporated these issues into the temporal con-
straint network paradigm [6]. There are several interrelated
conclusions. The latency issue a�ects the form of updates
that are propagated through the network, and reinforces the
need for an e�cient executive component. This motivates
the use of limited propagation, which in turn introduces the
need to augment the network with implied links. (An al-
gorithm that minimizes the set of added links is discussed
in [13].) The implied links are also useful for supporting
stronger forms of propagation that are required to handle
scheduling with uncontrollable events.

Acknowledgement We are grateful to Othar Hansson for
suggesting examples that helped to stimulate part of this
work.

References

[1] J.F. Allen and J.A. Koomen. Planning using a temporal
world model. In Proceedings of the 8th International

Joint Conference on Arti�cial Intelligence, pages 741{
747, Menlo Park, California, 1983. AAAI Press.

[2] R. P. Bonasso, D. Kortenkamp, D. Miller, and M. Slack.
Experiences with an architecture for intelligent, reac-
tive agents. JETAI, 9(1), 1997.

[3] A. Cesta and A. Oddi. Gaining e�ciency and exibil-
ity in the simple temporal problem. In L. Chittaro,
S. Goodwin, H. Hamilton, and Montanari A., editors,
Proceedings of the Third International Workshop on
Temporal Representation and Reasoning (TIME-96),
Los Alamitos, California, 1996. IEEE Computer Soci-
ety Press.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-
duction to Algorithms. MIT press, Cambridge, MA,
1990.

[5] T. Dean, R.J. Firby, and D. Miller. Hierarchical plan-
ning involving deadlines, travel time, and resources.
Computational Intelligence, 4:381{398, 1988.

[6] R. Dechter, I Meiri, and J. Pearl. Temporal constraint
networks. Arti�cial Intelligence, 49:61{95, May 1991.

[7] Brian Drabble, Austin Tate, and Je� Dalton. O-plan
project evaluation experiments and results. Oplan
Technical Report ARPA-RL/O-Plan/TR/23 Version
1, AIAI, July 1996.

[8] M.S. Fox and M. Zweben. Intelligent Scheduling. Mor-
gan Kaufmann, San Mateo, California, 1994.

[9] Sarit Krause, J. Wilkenfeld, and G. Zlotkin. Multia-
gent negotiation under time constraints. Technical Re-
port Techreport CS-TR-2975, Computer Science De-
partment, U. of Maryland, October 1992.

[10] N. Muscettola. HSTS: Integrating Planning and
Scheduling. Morgan Kaufmann, San Mateo, California,
1994.

[11] N. Muscettola. HSTS: Integrating planning and
scheduling. In Mark Fox and Monte Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994.

[12] N. Muscettola, B. Smith, S. Chien, C. Fry, G. Ra-
bideau, K. Rajan, and D. Yan. On-board plan-
ning for autonomous spacecraft. In Proceedings of
the Fourth International Symposium on Arti�cial In-
telligence, Robotics, and Automation for Space (i-
SAIRAS), July 1997.

[13] Nicola Muscettola, Paul Morris, and Ioannis Tsamardi-
nos. Reformulating temporal plans for e�cient exe-
cution. In Proc. of Sixth International Conference on
Principles of Knowledge Representation and Reasoning
(KR'98), 1998. To Appear.

[14] David Musliner, Ed Durfee, and Kang Shin. Circa: A
cooperative, intelligent, real-time control architecture.
IEEE Transactions on Systems, Man, and Cybernetics,
23(6), 1993.

[15] Barney Pell, Douglas E. Bernard, Steve A. Chien,
Erann Gat, Nicola Muscettola, P. Pandurang Nayak,
Michael D. Wagner, and Brian C. Williams. An au-
tonomous spacecraft agent prototype. In W. Lewis
Johnson, editor, Proceedings of the First Int'l Con-
ference on Autonomous Agents, pages 253{261. ACM
Press, 1997.



[16] Barney Pell, Ed Gamble, Erann Gat, Ron Keesing,
Jim Kurien, Bill Millar, P. Pandurang Nayak, Chris-
tian Plaunt, and Brian Williams. A hybrid procedu-
ral/deductive executive for autonomous spacecraft. In
M. Wooldridge, editor, Proceedings of the Second Int'l
Conference on Autonomous Agents. ACM Press, 1998.
To appear.

[17] Barney Pell, Erann Gat, Ron Keesing, Nicola Muscet-
tola, and Ben Smith. Robust periodic planning and ex-
ecution for autonomous spacecraft. In Procs. of IJCAI-
97, Los Altos, CA, 1997. IJCAI.

[18] Barney Pell, Gregory A. Dorais Christian Plaunt, and
Richard Washington. The remote agent executive: Ca-
pabilities to support integrated robotic agents. In Alan
Schultz and David Kortenkamp, editors, Procs. of the
AAAI Spring Symp. on Integrated Robotic Architec-
tures, Palo Alto, CA, 1998. AAAI Press.

[19] J. S. Penberty and D. Weld. Ucpop: A sound, com-
plete, partial order planner for adl. In Proceedings of the
3rd International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 103{115, San
Mateo, California, 1992. Morgan Kaufmann.

[20] Reid Simmons. An architecture for coordinating plan-
ning, sensing, and action. In Procs. DARPA Workshop
on Innovative Approaches to Planning, Scheduling and
Control, pages 292{297, San Mateo, CA, 1990. DARPA,
Morgan Kaufmann.

[21] T. Vidal and H. Fargier. Contingent durations in
temporal csps: From consistency to controllabili-
ties. Link�oping Electronic Articles in Computer and
Information Science, 2(2), 1997. Available from
http://www.ep.liu.se/ea/cis/1997/002/.

[22] T. Vidal and M. Ghallab. Dealing with uncertain du-
rations in temporal constraint networks dedicated to
planning. In Proc. of 12th European Conference on Ar-
ti�cial Intelligence (ECAI-96), pages 48{52, 1996.

[23] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and dy-
namic environments. JETAI, 7(1):197{227, 1995.

[24] Brian C. Williams and P. Pandurang Nayak. A model-
based approach to reactive self-con�guring systems. In
Procs. of AAAI-96, pages 971{978, Cambridge, Mass.,
1996. AAAI, AAAI Press.


